If $^8{C_r}{ = ^8}{C_{r + 2}}$, then the value of $^r{C_2}$ is
$8$
$3$
$5$
$2$
A student is to answer $10$ out of $13$ questions in an examination such that he must choose at least $4$ from the first five questions. The number of choices available to him is
Let $A_1,A_2,........A_{11}$ are players in a team with their T-shirts numbered $1,2,.....11$. Hundred gold coins were won by the team in the final match of the series. These coins is to be distributed among the players such that each player gets atleast one coin more than the number on his T-shirt but captain and vice captain get atleast $5$ and $3$ coins respectively more than the number on their respective T-shirts, then in how many different ways these coins can be distributed ?
In how many ways can a committee consisting of one or more members be formed out of $12$ members of the Municipal Corporation
A committee of $3$ persons is to be constituted from a group of $2$ men and $3$ women. In how many ways can this be done? How many of these committees would consist of $1$ man and $2$ women?
Let $\left(\begin{array}{l}n \\ k\end{array}\right)$ denotes ${ }^{n} C_{k}$ and $\left[\begin{array}{l} n \\ k \end{array}\right]=\left\{\begin{array}{cc}\left(\begin{array}{c} n \\ k \end{array}\right), & \text { if } 0 \leq k \leq n \\ 0, & \text { otherwise }\end{array}\right.$
If $A_{k}=\sum_{i=0}^{9}\left(\begin{array}{l}9 \\ i\end{array}\right)\left[\begin{array}{c}12 \\ 12-k+i\end{array}\right]+\sum_{i=0}^{8}\left(\begin{array}{c}8 \\ i\end{array}\right)\left[\begin{array}{c}13 \\ 13-k+i\end{array}\right]$
and $A_{4}-A_{3}=190 \mathrm{p}$, then $p$ is equal to :