यदि ${\left( {{x^4} + \frac{1}{{{x^3}}}} \right)^{15}}$ के विस्तार में $r$ वें पद में ${x^4}$ आता है, तो $r = $ 

  • A

    $7$

  • B

    $8$

  • C

    $9$

  • D

    $10$

Similar Questions

${(1 + x)^n}$ के द्विपद विस्तार में द्वितीय, तृतीय तथा चतुर्थ पदों के गुणांक समान्तर श्रेणी में हैं, तब ${n^2} - 9n$ का मान होगा

दिखाइए कि $(1+x)^{2 n}$ के प्रसार में मध्य पद का गुणांक, $(1+x)^{2 n-1}$ के प्रसार में दोनों मध्य पदों के गुणांकों के योग के बराबर होता है।

निम्नलिखित के प्रसार में व्यापक पद लिखिए

$\left(x^{2}-y x\right)^{12}, x \neq 0$

${\left( {\frac{{{x^2}}}{2} - \frac{2}{x}} \right)^8}$ के प्रसार में ${x^7}$ का गुणांक होगा

${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ के प्रसार में $\frac{1}{x}$ का गुणांक है