જો ${\left( {{x^4} + \frac{1}{{{x^3}}}} \right)^{15}}$ ના વિસ્તરણમાં ${x^4}$ એ ${r^{th}}$ પદમાં બને છે તો $r = $
$7$
$8$
$9$
$10$
$\left(\sqrt[3]{x}+\frac{1}{2 \sqrt[3]{x}}\right)^{18}$ ના વિસ્તરણનું $x$ થી સ્વતંત્ર પદ(અચળ પદ) શોધો.
$(x-2 y)^{12}$ ના વિસ્તરણનું ચોથું પદ શોધો.
$\left( t ^{2} x ^{\frac{1}{5}}+\frac{(1- x )^{\frac{1}{10}}}{ t }\right)^{15}, x \geq 0$ ના વિસ્તરણમાં $t$ થી સ્વતંત્ર હોય તેવા અચળ પદની મહતમ કિમંત $K$ હોય તો $8\,K$ નું મુલ્ય $....$ મેળવો.
જો ${\left( {x + 1} \right)^n}$ ના વિસ્તરણમાં $x$ ની ઘાતના કોઈ પણ ત્રણ ક્રમિક પદોનો ગુણોત્તર $2 : 15 : 70$ હોય તો ત્રણેય પદોના સહગુણોકની સરેરાસ મેળવો.
${\left( {{x^2} - \frac{1}{x}} \right)^9}$ ના વિસ્તરણમાં અચળપદ મેળવો.