यदि $x$ की घातों (powers) में, व्यंजक $\left(1+ ax + bx ^{2}\right)$ $(1-3 x)^{15}$ के प्रसार में $x^{2}$ तथा $x^{3}$ दोनों के गुणांक शून्य के बराबर हैं, तो क्रमित युग्म $( a , b )$ बराबर है
$(-54, 315)$
$(28, 861)$
$(28, 315)$
$(-21, 714)$
माना कि $S=\{a+b \sqrt{2}: a, b \in Z \}, T_1=\left\{(-1+\sqrt{2})^n: n \in N \right\}$, और $T_2=\left\{(1+\sqrt{2})^n: n \in N \right\}$ हैं। तब निम्नलिखित कथनों में से कौन सा (से) सत्य है (हैं)?
$(A)$ $Z \cup T_1 \cup T_2 \subset S$
$(B)$ $T_1 \cap\left(0, \frac{1}{2024}\right)=\phi$, जहां $\phi$ रिक्त समुच्चय (empty set) को दर्शाता है।
$(C)$ $T_2 \cap(2024, \infty) \neq \phi$
$(D)$ किन्हीं दिये गए $a, b \in Z$ के लिए, $\cos (\pi(a+b \sqrt{2}))+i \sin (\pi(a+b \sqrt{2})) \in Z$ यदि और केवल यदि (if and only if) $b=0$, जहां $i=\sqrt{-1}$ है।
${\left( {2x - \frac{1}{{2{x^2}}}} \right)^{12}}$ के प्रसार में $x$ से स्वतंत्र पद है
यदि ${\left( {{x^4} + \frac{1}{{{x^3}}}} \right)^{15}}$ के विस्तार में $r$ वें पद में ${x^4}$ आता है, तो $r = $
${\left( {x + \frac{1}{x}} \right)^{10}}$के विस्तार में मध्य पद है
${\left( {2x + \frac{1}{{3x}}} \right)^6}$ के प्रसार में $x$ से स्वतंत्र पद है