यदि ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .......... + {C_n}{x^n}$,  तब $\frac{{{C_1}}}{{{C_0}}} + \frac{{2{C_2}}}{{{C_1}}} + \frac{{3{C_3}}}{{{C_2}}} + .... + \frac{{n{C_n}}}{{{C_{n - 1}}}} = $

  • A

    $\frac{{n(n - 1)}}{2}$

  • B

    $\frac{{n(n + 2)}}{2}$

  • C

    $\frac{{n(n + 1)}}{2}$

  • D

    $\frac{{(n - 1)(n - 2)}}{2}$

Similar Questions

यदि $\left(1+\frac{1}{x}\right)^6\left(1+x^2\right)^7\left(1-x^3\right)^8 ; x \neq 0$ के प्रसार में $\mathrm{x}^{30}$ का गुणांक $\alpha$ है, तो $|\alpha|$ बराबर है.............

  • [JEE MAIN 2024]

$\left(1-x-x^{2}+x^{3}\right)^{6}$ के प्रसार में $x^{7}$ का गुणांक है:

  • [AIEEE 2011]

यदि $(1+ x )^{20}$ के प्रसार में $x ^{ r }$ का गुणांक ${ }^{20} C _{ I }$ है, तो $\sum_{ r =0}^{20} I ^{2}{ }^{20} C _{ I }$ का मान बराबर है.....।

  • [JEE MAIN 2021]

श्रेणी $\frac{{{C_0}}}{2} - \frac{{{C_1}}}{3} + \frac{{{C_2}}}{4} - \frac{{{C_3}}}{5} + $.....के $(n + 1)$ पदों का योग है

यदि $\frac{{ }^{11} \mathrm{C}_1}{2}+\frac{{ }^{11} \mathrm{C}_2}{3}+\ldots . .+\frac{{ }^{11} \mathrm{C}_9}{10}=\frac{\mathrm{n}}{\mathrm{m}}$ है तथा $\operatorname{gcd}(\mathrm{n}, \mathrm{m})=1$ है, तो $\mathrm{n}+\mathrm{m}$ बराबर है ............ 

  • [JEE MAIN 2024]