7.Binomial Theorem
hard

यदि $(1+\mathrm{x})^{10}$ के द्विपद प्रसार में $\mathrm{x}^{10-\mathrm{r}}$ का गुणांक $\mathrm{a}_{\mathrm{r}}$ है, तो $\sum_{\mathrm{r}=1}^{10} \mathrm{r}^3\left(\frac{\mathrm{a}_{\mathrm{r}}}{\mathrm{a}_{\mathrm{r}-1}}\right)^2$ बराबर है

A

$4895$

B

$1210$

C

$5445$

D

$3025$

(JEE MAIN-2023)

Solution

$a _{ r }={ }^{10} C _{10- r }={ }^{10} C _{ r }$

$\Rightarrow \sum \limits_{ r =1}^{10} r ^3\left(\frac{{ }^{10} C _{ r }}{{ }^{10} C _{ r -1}}\right)^2=\sum \limits_{ r =1}^{10} r ^3\left(\frac{11- r }{ r }\right)^2=\sum \limits_{ r =1}^{10} r (11- r )^2$

$=\sum \limits_{ r =1}^{10}\left(121 r + r ^3-22 r ^2\right)=1210$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.