- Home
- Standard 11
- Mathematics
7.Binomial Theorem
hard
यदि ${(1 + x)^{15}} = {C_0} + {C_1}x + {C_2}{x^2} + ...... + {C_{15}}{x^{15}}$ हो, तब ${C_2} + 2{C_3} + 3{C_4} + .... + 14{C_{15}}$ का मान है
A
${14.2^{14}}$
B
${13.2^{14}} + 1$
C
${13.2^{14}} - 1$
D
इनमें से कोई नहीं
(IIT-1966)
Solution
${(1 + x)^{15}} = {C_0} + {C_1}x + {C_2}{x^2}. + …. + {C_{15}}{x^{15}}$
$\frac{{{{(1 + x)}^{15}} – 1}}{x} = {C_1} + {C_2}x + …. + {C_{15}}{x^{14}}$
$x$ के सापेक्ष दोनों पक्षों का अवकलन करने पर,
$ = \frac{{x.15{{(1 + x)}^{14}} – {{(1 + x)}^{15}} + 1}}{{{x^2}}}$
= ${C_2} + 2{C_3}x + …… + \,14\,{C_{15}}{x^{13}}$
$x = 1$ रखने पर,
${C_2} + 2{C_3} + …. + 14{C_{15}} = {15.2^{14}} – {2^{15}} + 1 = {13.2^{14}} + 1.$
Standard 11
Mathematics