' $x$ ' का एक संभव मान, जिसके लिए व्यंजक $\left\{3^{\log _{3} \sqrt{25^{x-1}+7}}+3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}\right\}^{10}$ के $3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}$ की बढ़ती घातों में प्रसार में नौवॉँ पद $180$ के बराबर है

  • [JEE MAIN 2021]
  • A

    $2$

  • B

    $1$

  • C

    $0$

  • D

    $-1$

Similar Questions

${({x^2} - x - 1)^{99}}$ के गुणांकों का योग है

${(1 + x)^{50}}$ के विस्तार में $x$ की विषम घातों के पदों के गुणांकों का योग होगा

यदि $\left( x ^{ n }+\frac{2}{ x ^5}\right)^7$ के द्विपद प्रसार में $x$ की सभी धनात्मक घातों के गुणांको का योगफल $939$ है, तो $n$ के सभी सम्भव पूर्णांक मानों का योग है :

  • [JEE MAIN 2022]

यदि $\sum \limits_{ k =1}^{10} K ^2\left(10_{ C _{ K }}\right)^2=22000 L$ है, तो $L$ बराबर $..............$ है।

  • [JEE MAIN 2022]

माना कि $X=\left({ }^{10} C_1\right)^2+2\left({ }^{10} C_2\right)^2+3\left({ }^{10} C_3\right)^2+\cdots+10\left({ }^{10} C_{10}\right)^2,$ जहाँ ${ }^{10} C_r, r \in\{1,2, \ldots, 10\}$, द्विपद गुणांकों (binomial coefficients) को दर्शाते हैं। तब $\frac{1}{1430} X$ का मान है ..........|

  • [IIT 2018]