7.Binomial Theorem
hard

यदि ${(1 + x - 2{x^2})^6} = 1 + {a_1}x + {a_2}{x^2} + .... + {a_{12}}{x^{12}}$, तब व्यंजक ${a_2} + {a_4} + {a_6} + .... + {a_{12}}$ का मान है

A

$32$

B

$31$

C

$64$

D

इनमें से कोई नहीं

Solution

${(1 + x – 2{x^2})^6} = 1 + {a_1}x + {a_2}{x^2} + …. + {a_{12}}{x^{12}}$.

उपरोक्त  में $x = 1$ तथा $x = -1$ रखकर व प्राप्त परिणामों को जोड़ने पर

$64 = 2(1+a2+a4+…) $

$\therefore \,\,\,{a_2} + {a_4} + {a_6} + …. + {a_{12}} = 31$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.