7.Binomial Theorem
hard

If $x + y = 1$, then $\sum\limits_{r = 0}^n {{r^2}{\,^n}{C_r}{x^r}{y^{n - r}}} $ equals

A

$nxy$

B

$nx(x + yn)$

C

$nx(nx + y)$

D

None of these

Solution

(c) We have

$\sum\limits_{r = 0}^n {{r^2}{\,^n}{C_r}{x^r}{y^{n – r}}} $

$ = \sum\limits_{r = 0}^n {[r(r – 1) + r]{\,^n}} {C_r}{x^r}{y^{n – r}}$ 

$ = \sum\limits_{r = 0}^n {r(r – 1){\,^n}} {C_r}{x^r}{y^{n – r}} + \sum\limits_{r = 0}^n {{r^n}{C_r}{x^r}{y^{n – r}}} $ 

$ = \sum\limits_{r = 2}^{n – 2} {r(r – 1)\frac{n}{r}.\frac{{n – 1}}{{r – 1}}{\,^{n – 2}}{C_{r – 2}}{x^2}{x^{r – 2}}{y^{n – r}}} $ $ + \sum\limits_{r = 1}^{n – 1} {r\frac{n}{r}{\,^{n – 1}}{C_{r – 1}}x\,\,{x^{r – 1}}{y^{n – r}}} $

$ = n(n – 1){x^2}\sum\limits_{r = 2}^{n – 2} {{\,^{n – 2}}{C_{r – 2}}{x^{r – 2}}{y^{(n – 2) – (r – 2)}}} $ $+ nx\sum\limits_{r = 2}^{n – 1} {{\,^{n – 1}}{C_{r – 1}}{X^{r – 1}}{y^{(n – 1) – (r – 1)}}}$

$ = n(n – 1){x^2}{(x + y)^{n – 2}} + nx{(x + y)^{n – 1}}$

$ = n(n – 1){x^2} + nx,\,\,\,\,\,(\because x + y = 1)$ 

$ = nx(nx – x + 1) = nx(nx + y)\,,\,\,(\because x + y = 1)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.