Total number of terms in the expansion of $\left[ {{{\left( {1 + x} \right)}^{100}} + {{\left( {1 + {x^2}} \right)}^{100}}{{\left( {1 + {x^3}} \right)}^{100}}} \right]$ is

  • A

    $303$

  • B

    $201$

  • C

    $196$

  • D

    $301$

Similar Questions

The expression $x^3 - 3x^2 - 9x + c$ can be written in the form $(x - a)^2 (x - b)$ if the values of $c$ is

Given $(1 - 2x + 5x^2 - 10x^3) (1 + x)^n = 1 + a_1x + a_2x^2 + ....$ and that $a_1^2\,= 2a_2$ then the value of $n$ is

Coefficients of ${x^r}[0 \le r \le (n - 1)]$ in the expansion of ${(x + 3)^{n - 1}} + {(x + 3)^{n - 2}}(x + 2)$$ + {(x + 3)^{n - 3}}{(x + 2)^2} + ... + {(x + 2)^{n - 1}}$

Let $\left(\frac{n}{k}\right)=\frac{n !}{k !(n-k) !}$. Then the sum $\frac{1}{2^{10}} \sum \limits_{ k =0}^{10}\left(\frac{10}{ k }\right) k ^2$, lies in the interval

  • [KVPY 2021]

If ${}^{21}{C_1} + 3.{}^{21}{C_3} + 5.{}^{21}{C_5} + ......19{}^{21}{C_{19}} + 21.{}^{21}{C_{21}} = k$ Then number of prime factors of $k$ is