7.Binomial Theorem
medium

यदि ${a_k} = \frac{1}{{k(k + 1)}},$ जबकि $k = 1,\,2,\,3,\,4,.....,\,n$, तब ${\left( {\sum\limits_{k = 1}^n {{a_k}} } \right)^2} = $

A

$\left( {\frac{n}{{n + 1}}} \right)$

B

${\left( {\frac{n}{{n + 1}}} \right)^2}$

C

${\left( {\frac{n}{{n + 1}}} \right)^4}$

D

${\left( {\frac{n}{{n + 1}}} \right)^6}$

Solution

$\sum\limits_{k = 1}^n {{a_k}}  = \sum\limits_{k = 1}^n {\frac{1}{{k\,(k + 1)}}} $

=$\left( {1 – \frac{1}{2}} \right) + \left( {\frac{1}{2} – \frac{1}{3}} \right) + … + \left( {\frac{1}{n} – \frac{1}{{n + 1}}} \right)$

= $1 – \frac{1}{{n + 1}} = \frac{n}{{n + 1}}$

${\left( {\sum\limits_{k = 1}^n {{a_k}} } \right)^2} = {\left( {\frac{n}{{n + 1}}} \right)^2}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.