यदि ${a_k} = \frac{1}{{k(k + 1)}},$ जबकि $k = 1,\,2,\,3,\,4,.....,\,n$, तब ${\left( {\sum\limits_{k = 1}^n {{a_k}} } \right)^2} = $

  • A

    $\left( {\frac{n}{{n + 1}}} \right)$

  • B

    ${\left( {\frac{n}{{n + 1}}} \right)^2}$

  • C

    ${\left( {\frac{n}{{n + 1}}} \right)^4}$

  • D

    ${\left( {\frac{n}{{n + 1}}} \right)^6}$

Similar Questions

$2{C_0} + \frac{{{2^2}}}{2}{C_1} + \frac{{{2^3}}}{3}{C_2} + .... + \frac{{{2^{11}}}}{{11}}{C_{10}}$=

यदि $( x + y )^{ n }$ के प्रसार में गुणांकों का योगफल $4096$ है, तब प्रसार में महत्तम गुणांक है ....... |

  • [JEE MAIN 2021]

यदि $(1+\mathrm{x})^{10}$ के द्विपद प्रसार में $\mathrm{x}^{10-\mathrm{r}}$ का गुणांक $\mathrm{a}_{\mathrm{r}}$ है, तो $\sum_{\mathrm{r}=1}^{10} \mathrm{r}^3\left(\frac{\mathrm{a}_{\mathrm{r}}}{\mathrm{a}_{\mathrm{r}-1}}\right)^2$ बराबर है

  • [JEE MAIN 2023]

$^{10}{C_1}{ + ^{10}}{C_3}{ + ^{10}}{C_5}{ + ^{10}}{C_7}{ + ^{10}}{C_9} = $

यदि $\frac{1}{n+1}{ }^n C_n+\frac{1}{n}{ }^n C_{n-1}+\ldots+\frac{1}{2}{ }^n C_1+{ }^n C_0=\frac{1023}{10}$ है, तो $\mathrm{n}$ बराबर है :

  • [JEE MAIN 2023]