7.Binomial Theorem
hard

यदि ${(1 + x + {x^2})^n}$ के विस्तार में ${x^r}$का गुणांक ${a_r}$ हो, तो ${a_1} - 2{a_2} + 3{a_3} - .... - 2n\,{a_{2n}} = $

A

$0$

B

$n$

C

$-n$

D

$2n$

Solution

माना ${a_0} + {a_1}x + {a_2}{x^2} + ….. + {a_{2n}}{x^{2n}} = {(1 + x + {x^2})^n}$

दोनों पक्षों का $x$ के सापेक्ष अवकलन करने पर, ${a_1} + 2{a_2}x + … + 2n\,{a_{2n}}{x^{2n – 1}}$ = $n{(1 + x + {x^2})^{n – 1}}(2x + 1)$

$x = -1$ रखने पर  ${a_1} – 2{a_2} + 3{a_3} – …. + 2n\,{a_{2n}} =  – n$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.