यदि ${(x + a)^n}$ के विस्तार में विषम पदों का योग $P$ तथा सम पदों का योग $Q$ हो, तो $({P^2} - {Q^2})$ का मान होगा       

  • A

    ${({x^2} + {a^2})^n}$

  • B

    ${({x^2} - {a^2})^n}$

  • C

    ${(x - a)^{2n}}$

  • D

    ${(x + a)^{2n}}$

Similar Questions

$\frac{{{C_1}}}{{{C_0}}} + 2\frac{{{C_2}}}{{{C_1}}} + 3\frac{{{C_3}}}{{{C_2}}} + .... + 15\frac{{{C_{15}}}}{{{C_{14}}}} = $

  • [IIT 1962]

माना $(1+ x )^{ n }$ के प्रसार में $x ^{ r }$ का द्विपद गुणांक ${ }^{ n } C _{ r }$ है। यदि $\sum_{ k =0}^{10}\left(2^{2}+3 k \right)= C _{ k }=\alpha .3^{10}+\beta .2^{10}, \alpha$, $\beta \in R$ है, $\alpha+\beta$ बराबर है ............ |

  • [JEE MAIN 2021]

श्रेणी $2 .{ }^{20} C _{0}+5 .{ }^{20} C _{1}+8 .{ }^{20} C _{2}+11 .{ }^{20} C _{3}+\ldots  +62 .{ }^{20} C _{20}$ का योग बराबर है

  • [JEE MAIN 2019]

$\frac{{{C_0}}}{1} + \frac{{{C_2}}}{3} + \frac{{{C_4}}}{5} + \frac{{{C_6}}}{7} + ....$=

$\left(1-x-x^{2}+x^{3}\right)^{6}$ के प्रसार में $x^{7}$ का गुणांक है:

  • [AIEEE 2011]