જો ${(1 + x + {x^2})^n}$ ના વિસ્તરણમાં ${a_r}$ એ ${x^r}$ નો સહગુણક દર્શાવે છે ,તો ${a_1} - 2{a_2} + 3{a_3} - .... - 2n\,{a_{2n}} = $

  • A

    $0$

  • B

    $n$

  • C

    $-n$

  • D

    $2n$

Similar Questions

$\sum\limits_{n = 0}^4 {{{\left( {1009 - 2n} \right)}^4}\left( \begin{gathered}
  4 \hfill \\
  n \hfill \\ 
\end{gathered}  \right)} {\left( { - 1} \right)^n}$   ની કિમત મેળવો 

ધારો કે $m, n \in N$ અને ગુ.સા.અ. $\operatorname{gcd}(2, n)=1$. જો $30\left(\begin{array}{l}30 \\ 0\end{array}\right)+29\left(\begin{array}{l}30 \\ 1\end{array}\right)+\ldots+2\left(\begin{array}{l}30 \\ 28\end{array}\right)+1\left(\begin{array}{l}30 \\ 29\end{array}\right)= n .2^{ m }$ તો $n + m=.......$

(અહીં $\left.\left(\begin{array}{l} n \\ k \end{array}\right)={ }^{ n } C _{ k }\right)$

  • [JEE MAIN 2021]

$\sum\limits_{r = 0}^{15} {\left( {{}^{15}{C_r}{}^{40}{C_{15}}{}^{20}{C_r} - {}^{35}{C_{15}}{}^{15}{C_r}{}^{25}{C_r}} \right)} $ ની કિમત મેળવો 

$x^2(1+x)^{98}+x^3(1+x)^{97}+x^4(1+x)^{96}+\ldots+x^{54}(1+x)^{46}$ ના વિસ્તરણમાં $x^{70}$ નો સહગુણક ${ }^{99} \mathrm{C}_{\mathrm{p}}-{ }^{46} \mathrm{C}_{\mathrm{q}}$ છે. તો $p+q$ ની શક્ય કિંમત ........... છે. 

  • [JEE MAIN 2024]

$^{4n}{C_0}{ + ^{4n}}{C_4}{ + ^{4n}}{C_8} + ....{ + ^{4n}}{C_{4n}}$ = . . .