3 and 4 .Determinants and Matrices
medium

જો $p + q + r = 0 = a + b + c$, તો $\left| {\,\begin{array}{*{20}{c}}{pa}&{qb}&{rc}\\{qc}&{ra}&{pb}\\{rb}&{pc}&{qa}\end{array}\,} \right|= . . . $

A

$0$

B

$pa + qb + rc$

C

$1$

D

એકપણ નહી.

Solution

(a) We have $\left| {\,\begin{array}{*{20}{c}}{pa}&{qb}&{rc}\\{qc}&{ra}&{pb}\\{rb}&{pc}&{qa}\end{array}\,} \right|$

$ = pqr({a^3} + {b^3} + {c^3}) – abc({p^3} + {q^3} + {r^3})$

= $pqr(3abc) – abc(3pqr) = 0$,

$\left( \begin{gathered}
  \because \,p + q + r = 0\,,\,\therefore \,\,{p^3} + {q^3} + {r^3} = 3pqr \hfill \\
  \because \,\,a + b + c = 0\,,\therefore \,{a^3} + {b^3} + {c^3} = 3abc \hfill \\ 
\end{gathered}  \right)$
.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.