- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
medium
જો $p + q + r = 0 = a + b + c$, તો $\left| {\,\begin{array}{*{20}{c}}{pa}&{qb}&{rc}\\{qc}&{ra}&{pb}\\{rb}&{pc}&{qa}\end{array}\,} \right|= . . . $
A
$0$
B
$pa + qb + rc$
C
$1$
D
એકપણ નહી.
Solution
(a) We have $\left| {\,\begin{array}{*{20}{c}}{pa}&{qb}&{rc}\\{qc}&{ra}&{pb}\\{rb}&{pc}&{qa}\end{array}\,} \right|$
$ = pqr({a^3} + {b^3} + {c^3}) – abc({p^3} + {q^3} + {r^3})$
= $pqr(3abc) – abc(3pqr) = 0$,
$\left( \begin{gathered}
\because \,p + q + r = 0\,,\,\therefore \,\,{p^3} + {q^3} + {r^3} = 3pqr \hfill \\
\because \,\,a + b + c = 0\,,\therefore \,{a^3} + {b^3} + {c^3} = 3abc \hfill \\
\end{gathered} \right)$
.
Standard 12
Mathematics