3 and 4 .Determinants and Matrices
hard

यदि $[ x ]$ महत्तम पूर्णांक $\leq x$ है, तो रैखिक समीकरण निकाय $[\sin \theta] x +[-\cos \theta] y =0$ $[\cot \theta] x + y =0$

A

के अनन्त हल है यदि $\theta \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$ तथा मात्र एक हल है यदि $\theta \in\left(\pi, \frac{7 \pi}{6}\right)$

B

के अनन्त हल है यदि $\theta \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right) \cup\left(\pi, \frac{7 \pi}{6}\right)$

C

का मात्र एक हल है यदि $\theta \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$ तथा अनन्त हल है यदि $\theta \in\left(\pi, \frac{7 \pi}{6}\right)$

D

के मात्र एक हल है यदि $\theta \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right) \cup\left(\pi, \frac{7 \pi}{6}\right)$

(JEE MAIN-2019)

Solution

$\left[ {\sin \theta } \right]x + \left[ { – \cos \theta } \right]y = 0\,\,\,\,\,\,\,…….\left( 1 \right)$

$\left[ {\cot \theta } \right]x + y = 0\,\,\,\,\,\,\,……\left( 2 \right)$

Case $I$

Whene $\theta  \in \left( {\frac{\pi }{2},\frac{{2\pi }}{3}} \right)$

$\sin \theta  \in \left( {\frac{{\sqrt 3 }}{2},1} \right)$

$\cos \theta  \in \left( { – \frac{1}{2},0} \right) – \cos \theta  \in \left( {0,\frac{1}{2}} \right)$

$\cot \theta  \in \left( { – \frac{1}{{\sqrt 3 }},0} \right)$

$\left[ {\sin \theta } \right] = 0\,\,\,\,\,\left[ { – \cos \theta } \right] = 0\,\,\,\,\,\left[ {\cot \theta } \right] =  – 1$

Equation $(1)$ and $(2)$ will

$\left. \begin{array}{l}
0x + 0y = 0\\
 – x + y = 0
\end{array} \right]$ ystem will have infinitely many solution 

Case $II$

When $\theta  \in \left( {\pi ,\frac{{7\pi }}{6}} \right)\,\,\sin \theta  \in \left( { – \frac{1}{2},0} \right)$

$\cos \theta  \in \left( { – 1,\frac{{\sqrt 3 }}{2}} \right)$

$\cot \theta  \in \left( {\sqrt 3 ,\infty } \right)$

$\left[ {\sin \theta } \right] =  – 1,\left[ {\cos \theta } \right] =  – 1$

$\left[ {\cot \theta } \right] = \left\{ {1,2,3,……} \right\}$

$-x-y=0$

$Ix+y=0$              I={1,2,…..}

It will have unique solution in all cases $x=0,y=0$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.