यदि $\left| {\,\begin{array}{*{20}{c}}{ - {a^2}}&{ab}&{ac}\\{ab}&{ - {b^2}}&{bc}\\{ac}&{bc}&{ - {c^2}}\end{array}\,} \right| = K{a^2}{b^2}{c^2},$ तो $K = $
$-4$
$2$
$4$
$8$
यदि $\Delta_{ r }=\left|\begin{array}{ccc} r & 2 r -1 & 3 r -2 \\ \frac{ n }{2} & n -1 & a \\ \frac{1}{2} n ( n -1) & ( n -1)^{2} & \frac{1}{2}( n -1)(3 n +4)\end{array}\right|$ हैं, तो $\sum_{ r =1}^{ n -1} \Delta_{ r }$ का मान
$\lambda$ के उन भिन्न मानों का योग, जिनके लिए समीकरण निकाय
$(\lambda-1) x +(3 \lambda+1) y +2 \lambda z =0$
$(\lambda-1) x +(4 \lambda-2) y +(\lambda+3) z =0$
$2 x +(3 \lambda+1) y +3(\lambda-1) z =0$ के शून्येतर (non-zero) हल हैं, है
माना रैखिक समीकरण $x +2 y + z =2$, $\alpha x +3 y - z =\alpha,-\alpha x + y +2 z =-\alpha$ असंगत है तो $\alpha$ बराबर होगा।
$\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right| = $
समीकरण निकाय
$-k x+3 y-14 z=25$
$-15 x+4 y-k z=3$
$-4 x+y+3 z=4$
सभी $k$ के लिये किस समुच्चय में संगत होगा-