3 and 4 .Determinants and Matrices
hard

यदि ${a^{ - 1}} + {b^{ - 1}} + {c^{ - 1}} = 0$ इस प्रकार है  कि $\left| {\,\begin{array}{*{20}{c}}{1 + a}&1&1\\1&{1 + b}&1\\1&1&{1 + c}\end{array}\,} \right| = \lambda $, तो $\lambda $ का मान होगा

A

$0$

B

$abc$

C

$-abc$

D

इनमें से कोई नहीं

Solution

(b) $\left| {\,\begin{array}{*{20}{c}}{1 + a}&1&1\\1&{1 + b}&1\\1&1&{1 + c}\end{array}\,} \right| = \lambda $

 ${C_2} \to {C_2}- {C_1}$ और ${C_3} \to {C_3} – {C_1},$

$\left| {\,\begin{array}{*{20}{c}}{1 + a}&{ – a}&{ – a}\\1&b&0\\1&0&c\end{array}\,} \right|$

${R_3}$ के सापेक्ष विस्तार करने पर,

$ab + bc + ca + abc = \lambda $…….$(i)$

दिया है, ${a^{ – 1}} + {b^{ – 1}} + {c^{ – 1}} = 0$

==> $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$

==> $ab + bc + ca = 0$

==> $\lambda = abc$, समी. $(i)$ से.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.