यदि $\omega $ इकाई  का घनमूल हो व $\Delta  = \left| {\begin{array}{*{20}{c}}1&{2\omega }\\\omega &{{\omega ^2}}\end{array}} \right|$, तो ${\Delta ^2}$ =

  • A

    $ - \omega $

  • B

    $\omega $

  • C

    $1$

  • D

    ${\omega ^2}$

Similar Questions

समीकरण $\left| {\,\begin{array}{*{20}{c}}{1 + x}&1&1\\1&{1 + x}&1\\1&1&{1 + x}\end{array}\,} \right| = 0$  के मूल हैं

सारणिक $\left| {\,\begin{array}{*{20}{c}}{4 + {x^2}}&{ - 6}&{ - 2}\\{ - 6}&{9 + {x^2}}&3\\{ - 2}&3&{1 + {x^2}}\end{array}\,} \right|$ निम्न के द्वारा विभाज्य नहीं है

यदि $p + q + r = 0 = a + b + c$, तो सारणिक  $\left| {\,\begin{array}{*{20}{c}}{pa}&{qb}&{rc}\\{qc}&{ra}&{pb}\\{rb}&{pc}&{qa}\end{array}\,} \right|$ का मान है

यदि $A =\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]$ हो, तो दिखाइए $|3 A |=27| A |$

सारणिकों का मान ज्ञात कीजिए:

$\left|\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right|$