If ${D_r} = \left| {\begin{array}{*{20}{c}}{{2^{r - 1}}}&{{{2.3}^{r - 1}}}&{{{4.5}^{r - 1}}}\\x&y&z\\{{2^n} - 1}&{{3^n} - 1}&{{5^n} - 1}\end{array}} \right|$, then the value of $\sum\limits_{r = 1}^n {{D_r} = } $
$1$
$-1$
$0$
None of these
At what value of $x,$ will $\left| {\,\begin{array}{*{20}{c}}{x + {\omega ^2}}&\omega &1\\\omega &{{\omega ^2}}&{1 + x}\\1&{x + \omega }&{{\omega ^2}}\end{array}\,} \right| = 0$
If $\left| {\,\begin{array}{*{20}{c}}{y + z}&x&y\\{z + x}&z&x\\{x + y}&y&z\end{array}\,} \right| = k(x + y + z){(x - z)^2}$, then $k = $
If $a^2 + b^2 + c^2 = - 2$ and $f (x) = $ $\left| {\,\begin{array}{*{20}{c}}{1 + {a^2}x}&{(1 + {b^2})x}&{(1 + {c^2})x}\\{(1 + {a^2})x}&{1 + {b^2}x}&{(1 + {c^2})x}\\ {(1 + {a^2})x}&{(1 + {b^2})x}&{1 + {c^2}x}\end{array}\,} \right|$ then $f (x)$ is a polynomial of degree
The determinant $\left| {\begin{array}{*{20}{c}}{1\, + \,a\, + \,x}&{a\, + \,y}&{a\, + \,z}\\{b\, + \,x}&{1\, + \,b\, + \,y}&{b\, + \,z}\\{c\, + \,x}&{c\, + \,y}&{1\, + \,c\, + \,z}\end{array}} \right|$ $=$
$\left| {\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\sin }^2}\theta }&{{{\sin }^2}\theta }\\{{{\cos }^2}\theta }&{1 + {{\cos }^2}\theta }&{{{\cos }^2}\theta }\\{4\sin 4\theta }&{4\sin 4\theta }&{1 + 4\sin 4\theta }\end{array}} \right| = 0$ then $\sin \,4\theta $ equal to