3 and 4 .Determinants and Matrices
hard

यदि $f(\theta)=\left|\begin{array}{ccc}-\sin ^{2} \theta & -1-\sin ^{2} \theta & 1 \\ -\cos ^{2} \theta & -1-\cos ^{2} \theta & 1 \\ 12 & 10 & -2\end{array}\right|$ द्वारा परिभाषित फलन $f :\left[\frac{\pi}{4}, \frac{\pi}{2}\right] \rightarrow R$ के निम्नतम तथा उच्चतम मान क्रमशः $m$ तथा $M$ हैं, तो क्रमित युग्म $( m , M )$ बराबर है

A

$(0,4)$

B

$(-4,4)$

C

$(0,2 \sqrt{2})$

D

$(-4,0)$

(JEE MAIN-2020)

Solution

$C _{3} \rightarrow C _{3}-\left( C _{1}- C _{2}\right)$

$f(\theta)=\left|\begin{array}{ccc}-\sin ^{2} \theta & -1-\sin ^{2} \theta & 0 \\ -\cos ^{2} \theta & -1-\cos ^{2} \theta & 0 \\ 12 & 10 & -4\end{array}\right|$

$=-4\left[\left(1+\cos ^{2} \theta\right) \sin ^{2} \theta-\cos ^{2} \theta\left(1+\sin ^{2} \theta\right)\right]$

$=-4\left[\sin ^{2} \theta+\sin ^{2} \theta \cos ^{2} \theta-\cos ^{2} \theta-\cos ^{2} \theta \sin ^{2} \theta\right]$

$f(\theta)=4 \cos 2 \theta$

$\theta \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$

$2 \theta \in\left[\frac{\pi}{2}, \pi\right]$

$f(\theta) \in[-4,0]$

$( m , M )=(-4,0)$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.