જો $\left| {\,\begin{array}{*{20}{c}}{1 + ax}&{1 + bx}&{1 + cx}\\{1 + {a_1}x}&{1 + {b_1}x}&{1 + {c_1}x}\\{1 + {a_2}x}&{1 + {b_2}x}&{1 + {c_2}x}\end{array}\,} \right|,$ $ = {A_0} + {A_1}x + {A_2}{x^2} + {A_3}{x^3}$ તો ${A_1}$ =
$abc$
$0$
$1$
એકપણ નહી.
સમીકરણની સંહતિ $x + y + z = 2$, $2x + y - z = 3,$ $3x + 2y + kz = 4$ એ એકાકી ઉકેલ હોય તો . . . .
$\left| {\,\begin{array}{*{20}{c}}{4 + {x^2}}&{ - 6}&{ - 2}\\{ - 6}&{9 + {x^2}}&3\\{ - 2}&3&{1 + {x^2}}\end{array}\,} \right|$ એ.. .. વડે વિભાજ્ય નથી.
જો $a, b, c$ એ વિષમબાજુ ત્રિકોણની બાજુઓ હોય તો $\left| \begin{array}{*{20}{c}}
a&b&c\\
b&c&a\\
c&a&b
\end{array} \right|$ એ . . .
$x$ ની . . . કિમત માટે $\left| {\,\begin{array}{*{20}{c}}{ - x}&1&0\\1&{ - x}&1\\0&1&{ - x}\end{array}\,} \right| = 0$ મળે.
રેખીય સમીકરણની સિસ્ટમ $x + y + z = 2, 2x + 3y + 2z = 5$, $2x + 3y + (a^2 -1)\,z = a + 1$ તો