જો $[m\ n] \,\left[ {\begin{array}{*{20}{c}}m\\n\end{array}} \right] = [25]$ અને $m< n$, તો $(m, n) =$
$(2, 3)$
$(3, 4)$
$(4, 3)$
એકપણ નહી.
(b) It is obvious that $(m,n) =(3, 4).$
જો $\left[ {\begin{array}{*{20}{c}}1&2&3\\3&1&2\\2&3&1\end{array}} \right]\,\left[ \begin{array}{l}x\\y\\z\end{array} \right] = \left[ {\begin{array}{*{20}{c}}4&{ – 2}\\0&{ – 6}\\{ – 1}&2\end{array}} \right]\,\left[ \begin{array}{l}2\\1\end{array} \right]$, તો $(x,y,z)$ = . ..
જો શ્રેણિક $A = \left[ {\begin{array}{*{20}{c}}0&{ – 1}\\1&0\end{array}} \right]$, તો ${A^{16}} = $
$\cos \theta \left[ {\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }\\{ – \sin \theta }&{\cos \theta }\end{array}} \right] + \sin \theta \left[ {\begin{array}{*{20}{c}}{\sin \theta }&{ – \cos \theta }\\{\cos \theta }&{\sin \theta }\end{array}} \right] = $
જો $A = \left[ {\begin{array}{*{20}{c}}1&0\\2&0\end{array}} \right],B = \left[ {\begin{array}{*{20}{c}}0&0\\1&{12}\end{array}} \right]$, તો
જો $\quad A=\left[\begin{array}{cc}\cos \theta & \text { isin } \theta \\ \operatorname{isin} \theta & \cos \theta\end{array}\right], \left(\theta=\frac{\pi}{24}\right)$ અને $A^{5}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right],$ જ્યાં $i=\sqrt{-1},$ હોય તો નીચેનામાંથી ક્યૂ વિધાન અસત્ય છે ?
Confusing about what to choose? Our team will schedule a demo shortly.