3 and 4 .Determinants and Matrices
easy

If $A = \left[ {\begin{array}{*{20}{c}}{1/3}&2\\0&{2x - 3}\end{array}} \right],B = \left[ {\begin{array}{*{20}{c}}3&6\\0&{ - 1}\end{array}} \right]$and $AB = I$, then $x =$

A

$-1$

B

$1$

C

$0$

D

$2$

Solution

(b) $\left[ {\begin{array}{*{20}{c}}
  {1/3}&2 \\ 
  0&{2x – 3} 
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
  3&6 \\ 
  0&{ – 1} 
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
  1&0 \\ 
  0&{3 – 2x} 
\end{array}} \right] = I = \left[ {\begin{array}{*{20}{c}}
  1&0 \\ 
  0&1 
\end{array}} \right]$

(As given)

$\Leftrightarrow \,\,3 – 2x = 1$ or $x = 1$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.