- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
If $A = \left[ {\begin{array}{*{20}{c}}{1/3}&2\\0&{2x - 3}\end{array}} \right],B = \left[ {\begin{array}{*{20}{c}}3&6\\0&{ - 1}\end{array}} \right]$and $AB = I$, then $x =$
A
$-1$
B
$1$
C
$0$
D
$2$
Solution
(b) $\left[ {\begin{array}{*{20}{c}}
{1/3}&2 \\
0&{2x – 3}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
3&6 \\
0&{ – 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&{3 – 2x}
\end{array}} \right] = I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
(As given)
$\Leftrightarrow \,\,3 – 2x = 1$ or $x = 1$.
Standard 12
Mathematics