3 and 4 .Determinants and Matrices
easy

यदि $A = \left[ {\begin{array}{*{20}{c}}{1/3}&2\\0&{2x - 3}\end{array}} \right],B = \left[ {\begin{array}{*{20}{c}}3&6\\0&{ - 1}\end{array}} \right]$ और $AB = I$, तो $x =$

A

$-1$

B

$1$

C

$0$

D

$2$

Solution

(b)) $\left[ {\begin{array}{*{20}{c}} {1/3}&2 \\   0&{2x – 3} \end{array}} \right]\left[ {\begin{array}{*{20}{c}}
  3&6 \\   0&{ – 1} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}}  1&0 \\   0&{3 – 2x} \end{array}} \right] = I = \left[ {\begin{array}{*{20}{c}}  1&0 \\   0&1 \end{array}} \right]$

(दिये गए अनुसार)

 $ \Leftrightarrow \,\,3 – 2x = 1$ या $x = 1$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.