- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
यदि $A = \left[ {\begin{array}{*{20}{c}}{1/3}&2\\0&{2x - 3}\end{array}} \right],B = \left[ {\begin{array}{*{20}{c}}3&6\\0&{ - 1}\end{array}} \right]$ और $AB = I$, तो $x =$
A
$-1$
B
$1$
C
$0$
D
$2$
Solution
(b)) $\left[ {\begin{array}{*{20}{c}} {1/3}&2 \\ 0&{2x – 3} \end{array}} \right]\left[ {\begin{array}{*{20}{c}}
3&6 \\ 0&{ – 1} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0 \\ 0&{3 – 2x} \end{array}} \right] = I = \left[ {\begin{array}{*{20}{c}} 1&0 \\ 0&1 \end{array}} \right]$
(दिये गए अनुसार)
$ \Leftrightarrow \,\,3 – 2x = 1$ या $x = 1$.
Standard 12
Mathematics
Similar Questions
normal