If $A$ and $B$ are square matrices of same order, then
$A + B = B + A$
$A + B = A - B$
$A - B = B - A$
$AB = BA$
(a)It is obvious.
If $A = [a\,\,b],B = [ – b – a]$ and $C = \left[ \begin{array}{l}\,\,\,\,a\\ – a\end{array} \right]$, then the correct statement is
Show that
$\left[ {\begin{array}{*{20}{c}} 5&{ – 1} \\ 6&7 \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 2&1 \\ 3&4 \end{array}} \right]$ $ \ne \left[ {\begin{array}{*{20}{l}} 2&1 \\ 3&4 \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 5&{ – 1} \\ 6&7 \end{array}} \right]$
Find $x$ and $y,$ if $2\left[\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$
Find $\mathrm{X}$ and $\mathrm{Y}$, if $\mathrm{X}+\mathrm{Y}=\left[\begin{array}{ll}5 & 2 \\ 0 & 9\end{array}\right]$ and $\mathrm{X}-\mathrm{Y}=\left[\begin{array}{cc}3 & 6 \\ 0 & -1\end{array}\right]$.
$A,B$ are n-rowed square matrices such that $AB = O$ and $B$ is non-singular. Then
Confusing about what to choose? Our team will schedule a demo shortly.