- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
यदि $A = \left[ {\begin{array}{*{20}{c}}i&0\\0&i\end{array}} \right]$ ओर $B = \left[ {\begin{array}{*{20}{c}}0&{ - i}\\{ - i}&0\end{array}} \right]$ तो $(A + B)(A - B)$
A
${A^2} - {B^2}$
B
${A^2} + {B^2}$
C
${A^2} - {B^2} + BA + AB$
D
इनमें से कोई नहीं
Solution
यहाँ $AB = \left[ {\begin{array}{*{20}{c}}i&0\\0&i\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}0&{ – i}\\{ – i}&0\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]$
तथा $BA = \left[ {\begin{array}{*{20}{c}}0&{ – i}\\{ – i}&0\end{array}} \right]\left[ {\begin{array}{*{20}{c}}i&0\\0&i\end{array}} \right]\, = \left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]$
चूकि $AB = BA,$ अत: $(A + B)(A – B) = {A^2} – {B^2}$.
Standard 12
Mathematics