- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
यदि $A = \left[ {\begin{array}{*{20}{c}}a&b\\b&a\end{array}} \right]$ और ${A^2} = \left[ {\begin{array}{*{20}{c}}\alpha &\beta \\\beta &\alpha \end{array}} \right]$, तो
A
$\alpha = {a^2} + {b^2},\beta = ab$
B
$\alpha = {a^2} + {b^2},\beta = 2ab$
C
$\alpha = {a^2} + {b^2},\beta = {a^2} - {b^2}$
D
$\alpha = 2ab,\beta = {a^2} + {b^2}$
(AIEEE-2003)
Solution
(b) ${A^2} = \left[ {\begin{array}{*{20}{c}}\alpha &\beta \\\beta &\alpha \end{array}} \right] = \left[ {\begin{array}{*{20}{c}}a&b\\b&a\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}a&b\\b&a\end{array}} \right]$; $\alpha = {a^2} + {b^2};\,\beta = 2ab.$
Standard 12
Mathematics