$\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{m{a_1}}&{{b_1}}\\{{a_2}}&{m{a_2}}&{{b_2}}\\{{a_3}}&{m{a_3}}&{{b_3}}\end{array}\,} \right| = $
$0$
$m{a_1}{a_2}{a_3}$
$m{a_1}{a_2}{b_3}$
$m{b_1}{a_2}{a_3}$
$\left| {\,\begin{array}{*{20}{c}}x&4&{y + z}\\y&4&{z + x}\\z&4&{x + y}\end{array}\,} \right| = $
$\left|\begin{array}{rr}2 & 4 \\ -1 & 2\end{array}\right|$ का मान ज्ञात कीजिए।
सारणिक $\left| {{\rm{ }}\begin{array}{*{20}{c}}1&2&3\\3&5&7\\8&{14}&{20}\end{array}} \right|$ का मान होगा
$\left| {\begin{array}{*{20}{c}}0&a&{ - b}\\{ - a}&0&c\\b&{ - c}&0\end{array}} \right| = $
निम्न समीकरण निकाय पर विचार कीजिए : $x+2 y-3 z=a$ ; $2 x+6 y-11 z=b$ ; $x-2 y+7 z=c$ जहाँ $a , b$ तथा $c$ वास्तविक अचर हैं। तो इस समीकरण निकाय: