If $a,b,c$ be positive and not all equal, then the value of the determinant $\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right|$ is

  • [IIT 1982]
  • A

    $- ve$

  • B

    $=+ ve$

  • C

    Depends on $a,b,c$

  • D

    None of these

Similar Questions

Evaluate the determinants

$\left|\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right|$

The values of the determinant $\left| {\,\begin{array}{*{20}{c}}1&{\cos (\alpha - \beta )}&{\cos \alpha }\\{\cos (\alpha - \beta )}&1&{\cos \beta }\\{\cos \alpha }&{\cos \beta }&1\end{array}\,} \right|$ is

If $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha - b}\\b&c&{b\alpha - c}\\2&1&0\end{array}\,} \right| = 0$ and $\alpha \ne \frac{1}{2},$ then

The value of $\left| {\,\begin{array}{*{20}{c}}{41}&{42}&{43}\\{44}&{45}&{46}\\{47}&{48}&{49}\end{array}\,} \right| = $

If the system of equations $\mathrm{x}+4 \mathrm{y}-\mathrm{z}=\lambda$, $7 x+9 y+\mu z=-3,5 x+y+2 z=-1$ has infinitely many solutions, then $(2 \mu .+3 \lambda)$ is equal to :

  • [JEE MAIN 2024]