- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
medium
If $a,b,c$ be positive and not all equal, then the value of the determinant $\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right|$ is
A
$- ve$
B
$=+ ve$
C
Depends on $a,b,c$
D
None of these
(IIT-1982)
Solution
(a) $\Delta = – ({a^3} + {b^3} + {c^3} – 3abc)$
= $ – (a + b + c)\,({a^2} + {b^2} + {c^2} – ab – bc – ca)$
$ = – \frac{1}{2}(a + b + c)\,[{(a – b)^2} + {(b – c)^2} + {(c – a)^2}]$,
which is clearly negative because of the given conditions.
Standard 12
Mathematics