If $\cos x + \cos y + \cos \alpha = 0$ and $\sin x + \sin y + \sin \alpha = 0,$ then $\cot \,\left( {\frac{{x + y}}{2}} \right) = $

  • A

    $\sin \alpha $

  • B

    $\cos \alpha $

  • C

    $\cot \alpha $

  • D

    $\sin \,\left( {\frac{{x + y}}{2}} \right)$

Similar Questions

$\left( {\frac{{\sin 2A}}{{1 + \cos 2A}}} \right)\,\left( {\frac{{\cos A}}{{1 + \cos A}}} \right)= $

$4 \,\,sin5^o \,\,sin55^o \,\,sin65^o$ has the values equal to

If $\frac{\sqrt{2} \sin \alpha}{\sqrt{1+\cos 2 \alpha}}=\frac{1}{7}$ and $\sqrt{\frac{1-\cos 2 \beta}{2}}=\frac{1}{\sqrt{10}}$ $\alpha, \beta \in\left(0, \frac{\pi}{2}\right),$ then $\tan (\alpha+2 \beta)$ is equal to

  • [JEE MAIN 2020]

Suppose $\theta $ and $\phi  (\ne 0)$ are such that $sec\,(\theta  + \phi ),$ $sec\,\theta $ and $sec\,(\theta  - \phi )$ are in $A.P.$ If $cos\,\theta  = k\,cos\,( \frac {\phi }{2})$ for some $k,$ then $k$ is equal to

  • [AIEEE 2012]

The value of $cot\, 7\frac{{{1^0}}}{2}$ $+ tan\, 67 \frac{{{1^0}}}{2} - cot 67 \frac{{{1^0}}}{2} - tan7 \frac{{{1^0}}}{2}$ is :