3.Trigonometrical Ratios, Functions and Identities
medium

If $\cos x + \cos y + \cos \alpha = 0$ and $\sin x + \sin y + \sin \alpha = 0,$ then $\cot \,\left( {\frac{{x + y}}{2}} \right) = $

A

$\sin \alpha $

B

$\cos \alpha $

C

$\cot \alpha $

D

$\sin \,\left( {\frac{{x + y}}{2}} \right)$

Solution

(c) Given equation $\cos x + \cos y + \cos \alpha = 0$ 

and $\sin x + \sin y + \sin \alpha = 0.$

The given equation may be written as $\cos x + \cos y = – \cos \alpha $ 

and $\sin x + \sin y = – \sin \alpha .$

Therefore $2\cos \left( {\frac{{x + y}}{2}} \right)\cos \left( {\frac{{x – y}}{2}} \right) = – \cos \alpha $…..$(i) $

$2\sin \left( {\frac{{x + y}}{2}} \right)\cos \left( {\frac{{x – y}}{2}} \right) = – \sin \alpha $…..$(ii)$

Divide $(i)$ by $(ii)$, we get 

$\frac{{2\cos \left( {\frac{{x + y}}{2}} \right)\cos \left( {\frac{{x – y}}{2}} \right)}}{{2\sin \left( {\frac{{x + y}}{2}} \right)\cos \left( {\frac{{x – y}}{2}} \right)}}$$ = \frac{{\cos \alpha }}{{\sin \alpha }}$

==> $\cot \left( {\frac{{x + y}}{2}} \right) = \cot \alpha $.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.