- Home
- Standard 11
- Mathematics
If $\cos x + \cos y + \cos \alpha = 0$ and $\sin x + \sin y + \sin \alpha = 0,$ then $\cot \,\left( {\frac{{x + y}}{2}} \right) = $
$\sin \alpha $
$\cos \alpha $
$\cot \alpha $
$\sin \,\left( {\frac{{x + y}}{2}} \right)$
Solution
(c) Given equation $\cos x + \cos y + \cos \alpha = 0$
and $\sin x + \sin y + \sin \alpha = 0.$
The given equation may be written as $\cos x + \cos y = – \cos \alpha $
and $\sin x + \sin y = – \sin \alpha .$
Therefore $2\cos \left( {\frac{{x + y}}{2}} \right)\cos \left( {\frac{{x – y}}{2}} \right) = – \cos \alpha $…..$(i) $
$2\sin \left( {\frac{{x + y}}{2}} \right)\cos \left( {\frac{{x – y}}{2}} \right) = – \sin \alpha $…..$(ii)$
Divide $(i)$ by $(ii)$, we get
$\frac{{2\cos \left( {\frac{{x + y}}{2}} \right)\cos \left( {\frac{{x – y}}{2}} \right)}}{{2\sin \left( {\frac{{x + y}}{2}} \right)\cos \left( {\frac{{x – y}}{2}} \right)}}$$ = \frac{{\cos \alpha }}{{\sin \alpha }}$
==> $\cot \left( {\frac{{x + y}}{2}} \right) = \cot \alpha $.