If $x + y + z = {180^o},$ then $\cos 2x + \cos 2y - \cos 2z$ is equal to
$4\sin x.\,\sin y.\,\sin z$
$1 - 4\sin x.\,\sin y.\,\cos z$
$4 sin x. sin y. sin z -1$
$\cos A.\cos B.\cos C$
In any triangle $ABC ,$ ${\sin ^2}\frac{A}{2} + {\sin ^2}\frac{B}{2} + {\sin ^2}\frac{C}{2}$ is equal to
The value of $\frac{{\tan {{70}^o} - \tan {{20}^o}}}{{\tan {{50}^o}}} = $
$\tan 5x\tan 3x\tan 2x = $
If $a\tan \theta = b$, then $a\cos 2\theta + b\sin 2\theta = $
$2\,{\sin ^2}\beta + 4\,\,\cos \,(\alpha + \beta )\,\,\sin \,\alpha \,\sin \,\beta + \cos \,2\,(\alpha + \beta ) = $