If $x + y + z = {180^o},$ then $\cos 2x + \cos 2y - \cos 2z$ is equal to

  • A

    $4\sin x.\,\sin y.\,\sin z$

  • B

    $1 - 4\sin x.\,\sin y.\,\cos z$

  • C

    $4  sin x. sin  y. sin  z -1$

  • D

    $\cos A.\cos B.\cos C$

Similar Questions

If $\cos \,(\theta - \alpha ) = a,\,\,\sin \,(\theta - \beta ) = b,\,\,$then ${\cos ^2}(\alpha - \beta ) + 2ab\,\sin \,(\alpha - \beta )$ is equal to

$\cos A + \cos (240^\circ + A) + \cos (240^\circ - A) = $

If $\tan \alpha = \frac{1}{7}$ and $\sin \beta = \frac{1}{{\sqrt {10} }}\left( {0 < \alpha ,\,\beta < \frac{\pi }{2}} \right)$, then $2\beta $ is equal to

$\frac{{\sin 3\theta - \cos 3\theta }}{{\sin \theta + \cos \theta }} + 1 = $

$\frac{1}{{\sin 10^\circ }} - \frac{{\sqrt 3 }}{{\cos 10^\circ }} =$

  • [IIT 1974]