$\cos \alpha .\sin (\beta - \gamma ) + \cos \beta .\sin (\gamma - \alpha ) + \cos \gamma .\sin (\alpha - \beta ) = $
$0$
$1/2$
$1$
$4\cos \alpha \cos \beta \cos \gamma $
The value of $\frac{{\tan {{70}^o} - \tan {{20}^o}}}{{\tan {{50}^o}}} = $
If $2\tan A = 3\tan B,$ then $\frac{{\sin 2B}}{{5 - \cos 2B}}$ is equal to
$4 \,\,sin5^o \,\,sin55^o \,\,sin65^o$ has the values equal to
The value of $cot\, 7\frac{{{1^0}}}{2}$ $+ tan\, 67 \frac{{{1^0}}}{2} - cot 67 \frac{{{1^0}}}{2} - tan7 \frac{{{1^0}}}{2}$ is :
If $\sin \left( {x + \frac{{4\pi }}{9}} \right) = a;\,$ $\frac{\pi }{9}\, < \,x\, < \,\frac{\pi }{3},$ then $\cos \left( {x + \frac{{7\pi }}{9}} \right)$ equals :-