$2\,{\sin ^2}\beta + 4\,\,\cos \,(\alpha + \beta )\,\,\sin \,\alpha \,\sin \,\beta + \cos \,2\,(\alpha + \beta ) = $
$\sin \,\,2\alpha $
$\cos \,\,2\beta $
$\cos \,\,2\alpha $
$\sin \,\,2\beta $
$96 \cos \frac{\pi}{33} \cos \frac{2 \pi}{33} \cos \frac{4 \pi}{33} \cos \frac{8 \pi}{33} \cos \frac{16 \pi}{33}$ बराबर है
यदि $A, B, C$ किसी त्रिभुज के कोण हों, तो $\sin 2A + \sin 2B - \sin 2C$ का मान होगा
$3\,\left[ {{{\sin }^4}\,\left( {\frac{{3\pi }}{2} - \alpha } \right) + {{\sin }^4}\,(3\pi + \alpha )} \right]$ $ - 2\,\left[ {{{\sin }^6}\,\left( {\frac{\pi }{2} + \alpha } \right) + {{\sin }^6}(5\pi - \alpha )} \right] = $
यदि $x + \frac{1}{x} = 2\,\cos \theta ,$ तो ${x^3} + \frac{1}{{{x^3}}} = $
निम्नलिखित को सिद्ध कीजिए
$\cos ^{2} 2 x-\cos ^{2} 6 x=\sin 4 x \sin 8 x$