यदि $\cos \theta = \frac{1}{2}\left( {a + \frac{1}{a}} \right),$ तब $\cos 3\theta $ का मान होगा
$\frac{1}{8}\left( {{a^3} + \frac{1}{{{a^3}}}} \right)$
$\frac{3}{2}\left( {a + \frac{1}{a}} \right)$
$\frac{1}{2}\left( {{a^3} + \frac{1}{{{a^3}}}} \right)$
$\frac{1}{3}\left( {{a^3} + \frac{1}{{{a^3}}}} \right)$
$\sqrt 2 + \sqrt 3 + \sqrt 4 + \sqrt 6 = $
यदि $\cos \left( {\frac{{\alpha - \beta }}{2}} \right) = 2\cos \left( {\frac{{\alpha + \beta }}{2}} \right)$, तो $\tan \frac{\alpha }{2}\tan \frac{\beta }{2}$ का मान होगा
यदि $(\sec A + \tan A)\,(\sec B + \tan B)\,(\sec C + \tan C)$$ = \,(\sec A - \tan A)\,(\sec B - \tan B)\,(\sec C - \tan C),$ तब प्रत्येक पक्ष बराबर है
${\cos ^2}A{(3 - 4{\cos ^2}A)^2} + {\sin ^2}A{(3 - 4{\sin ^2}A)^2} = $
$\tan 5x\tan 3x\tan 2x = $