यदि $\cos \theta = \frac{1}{2}\left( {a + \frac{1}{a}} \right),$ तब $\cos 3\theta $ का मान होगा

  • A

    $\frac{1}{8}\left( {{a^3} + \frac{1}{{{a^3}}}} \right)$

  • B

    $\frac{3}{2}\left( {a + \frac{1}{a}} \right)$

  • C

    $\frac{1}{2}\left( {{a^3} + \frac{1}{{{a^3}}}} \right)$

  • D

    $\frac{1}{3}\left( {{a^3} + \frac{1}{{{a^3}}}} \right)$

Similar Questions

$\sqrt 2  + \sqrt 3  + \sqrt 4  + \sqrt 6  = $

  • [IIT 1975]

यदि $\cos \left( {\frac{{\alpha  - \beta }}{2}} \right) = 2\cos \left( {\frac{{\alpha  + \beta }}{2}} \right)$, तो $\tan \frac{\alpha }{2}\tan \frac{\beta }{2}$ का मान होगा

यदि $(\sec A + \tan A)\,(\sec B + \tan B)\,(\sec C + \tan C)$$ = \,(\sec A - \tan A)\,(\sec B - \tan B)\,(\sec C - \tan C),$ तब प्रत्येक पक्ष बराबर है

${\cos ^2}A{(3 - 4{\cos ^2}A)^2} + {\sin ^2}A{(3 - 4{\sin ^2}A)^2} = $

$\tan 5x\tan 3x\tan 2x = $