3.Trigonometrical Ratios, Functions and Identities
medium

यदि $\tan \alpha = \frac{1}{7}$ तथा  $\sin \beta = \frac{1}{{\sqrt {10} }}\left( {0 < \alpha ,\,\beta < \frac{\pi }{2}} \right)$, तब  $2\beta $ बराबर है

A

$\frac{\pi }{4} - \alpha $

B

$\frac{{3\pi }}{4} - \alpha $

C

$\frac{\pi }{8} - \frac{\alpha }{2}$

D

$\frac{{3\pi }}{8} - \frac{\alpha }{2}$

Solution

चूँकि $\sin \beta  = \frac{1}{{\sqrt {10} }} \Rightarrow \tan \beta  = \frac{1}{3}$

$\Rightarrow$ $\tan 2\beta  = \frac{{2\tan \beta }}{{1 – {{\tan }^2}\beta }} = \frac{3}{4}$

$\therefore \tan (\alpha  + 2\beta ) = \frac{{\frac{1}{7} + \frac{3}{4}}}{{1 – \frac{1}{7}.\frac{3}{4}}} = \frac{{25}}{{25}} = 1$

अब $0 < \beta  < \frac{\pi }{2}$ एवं $\tan 2\beta  = \frac{3}{4} > 0$ दोनों

$\Rightarrow$  $0 < 2\beta  < \frac{\pi }{2}$.

पुन: $0 < \alpha  < \frac{\pi }{2}$ एवं $0 < 2\beta  < \frac{\pi }{2}$ दोनों 

$\Rightarrow$  $0 < \alpha  + 2\beta  < \pi $

अत: $0 < \alpha  + 2\beta  < \pi $ एवं $\tan (\alpha  + 2\beta ) = 1$ दोनों     

$\Rightarrow$  $\alpha  + 2\beta  = \frac{\pi }{4} $

$\Rightarrow 2\beta  = \frac{\pi }{4} – \alpha $.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.