यदि $\tan \alpha = \frac{1}{7}$ तथा  $\sin \beta = \frac{1}{{\sqrt {10} }}\left( {0 < \alpha ,\,\beta < \frac{\pi }{2}} \right)$, तब  $2\beta $ बराबर है

  • A

    $\frac{\pi }{4} - \alpha $

  • B

    $\frac{{3\pi }}{4} - \alpha $

  • C

    $\frac{\pi }{8} - \frac{\alpha }{2}$

  • D

    $\frac{{3\pi }}{8} - \frac{\alpha }{2}$

Similar Questions

$\frac{{\sin 3A - \cos \left( {\frac{\pi }{2} - A} \right)}}{{\cos A + \cos (\pi + 3A)}} = $

$96 \cos \frac{\pi}{33} \cos \frac{2 \pi}{33} \cos \frac{4 \pi}{33} \cos \frac{8 \pi}{33} \cos \frac{16 \pi}{33}$  बराबर है

  • [JEE MAIN 2023]

यदि $\alpha ,\,\beta ,\,\gamma \in \,\left( {0,\,\frac{\pi }{2}} \right)$, तो $\frac{{\sin \,(\alpha + \beta + \gamma )}}{{\sin \alpha + \sin \beta + \sin \gamma }}$ का मान होगा

यदि $\sin 2\theta + \sin 2\phi = 1/2$ तथा  $\cos 2\theta + \cos 2\phi = 3/2$, तब  ${\cos ^2}(\theta - \phi ) = $

यदि $x\cos \theta = y\cos \,\left( {\theta + \frac{{2\pi }}{3}} \right) = z\cos \,\left( {\theta + \frac{{4\pi }}{3}} \right)$ , तब $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ बराबर है

  • [IIT 1984]