यदि $\cos \left( {\frac{{\alpha  - \beta }}{2}} \right) = 2\cos \left( {\frac{{\alpha  + \beta }}{2}} \right)$, तो $\tan \frac{\alpha }{2}\tan \frac{\beta }{2}$ का मान होगा

  • A

    $\frac{1}{2}$

  • B

    $1\over3$

  • C

    $\frac{1}{4}$

  • D

    $\frac{1}{8}$

Similar Questions

माना $\cos (\alpha+\beta)=\frac{4}{5}$ और $\sin (\alpha-\beta)=\frac{5}{13},$ जहाँ $0 \leq \alpha, \beta \leq \frac{\pi}{4}$ तो $\tan 2 \alpha$ बराबर है

  • [IIT 1979]

$\tan 5x\tan 3x\tan 2x = $

$\cos \frac{{2\pi }}{{15}}\cos \frac{{4\pi }}{{15}}\cos \frac{{8\pi }}{{15}}\cos \frac{{16\pi }}{{15}}  =$

  • [IIT 1985]

यदि $\tan A = \frac{1}{2},\tan B = \frac{1}{3},$ तब $\cos 2A = $

निम्नलिखित को सिद्ध कीजिए

$\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}=2 \sin x$