यदि $\alpha $ समीकरण $25{\cos ^2}\theta + 5\cos \theta - 12 = 0$, $\pi /2 < \alpha < \pi $ का एक मूल हो, तो $\sin 2\alpha $ का मान होगा
$24/25$
$ - 24/25$
$13/18$
$ - 13/18$
यदि $A, B, C$ धनात्मक न्यूनकोण इस प्रकार हैं कि $A + B + C = \pi $ तथा $\cot A\,\cot \,B\,\cot \,C = K,$ तब
यदि $k = \sin \frac{\pi }{{18}}\,.\,\sin \frac{{5\pi }}{{18}}\,.\,\sin \frac{{7\pi }}{{18}},$ तो $k$ का आंकिक मान है
यदि $\frac{\sqrt{2} \sin \alpha}{\sqrt{1+\cos 2 \alpha}}=\frac{1}{7}$ तथा $\sqrt{\frac{1-\cos 2 \beta}{2}}=\frac{1}{\sqrt{10}}, \alpha$, $\beta \in\left(0, \frac{\pi}{2}\right)$, हैं, तो $\tan (\alpha+2 \beta)$ बराबर ........ है |
$\cos \frac{\pi }{5}\cos \frac{{2\pi }}{5}\cos \frac{{4\pi }}{5}\cos \frac{{8\pi }}{5} = $
माना कि $\frac{\pi}{2} < x < \pi$ इस प्रकार है कि $\cot x=\frac{-5}{\sqrt{11}}$ है। तब
$\left(\sin \frac{11 x}{2}\right)(\sin 6 x-\cos 6 x)+\left(\cos \frac{11 x}{2}\right)(\sin 6 x+\cos 6 x)$ बराबर है