3.Trigonometrical Ratios, Functions and Identities
medium

यदि $\alpha $ समीकरण $25{\cos ^2}\theta  + 5\cos \theta  - 12 = 0$, $\pi /2 < \alpha  < \pi $ का एक मूल हो, तो $\sin 2\alpha $ का मान होगा

A

$24/25$

B

$ - 24/25$

C

$13/18$

D

$ - 13/18$

Solution

चूँकि $\alpha $ समीकरण $25{\cos ^2}\theta  + 5\cos \theta  – 12 = 0$ का मूल है।

$\therefore$ $25{\cos ^2}\alpha  + 5\cos \alpha  – 12 = 0$

$\cos \alpha  = \frac{{ – 5 \pm \sqrt {25 + 1200} }}{{50}}$ $ = \frac{{ – 5 \pm 35}}{{50}}$

$\cos \alpha  =  – 4/5$                   $[ \because \pi /2 < \alpha  < \pi  \Rightarrow \cos \alpha  < 0]$ 

$\therefore $$\sin 2\alpha  = 2\sin \alpha \cos \alpha  =  – 24/25$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.