दी गई आकृति में $\theta_1+\theta_2=\frac{\pi}{2}$ तथा
$\sqrt{3}(\mathrm{BE})=4(\mathrm{AB})$ है। यदि $\triangle \mathrm{CAB}$ का क्षेत्रफल
$2 \sqrt{3}-3$ वर्ग इकाई है, जब $\frac{\theta_2}{\theta_1}$ अधिकतम है, तो
$\triangle \mathrm{CED}$ का परिमाप (इकाई में) बराबर है :
$5$
$4$
$6$
$3$
यदि ${\cos ^6}\alpha + {\sin ^6}\alpha + K\,{\sin ^2}2\alpha = 1,$ हो तो $K $ का मान होगा
यदि $\cos x + \cos y + \cos \alpha = 0$ तथा $\sin x + \sin y + \sin \alpha = 0,$ तब $\cot \,\left( {\frac{{x + y}}{2}} \right) = $
$\tan 3A - \tan 2A - \tan A = $
$\frac{{\cos A}}{{1 - \sin A}} = $
$\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = $