$\tan 5x\tan 3x\tan 2x = $
$\tan 5x - \tan 3x - \tan 2x$
$\frac{{\sin 5x - \sin 3x - \sin 2x}}{{\cos 5x - \cos 3x - \cos 2x}}$
$0$
इनमें से कोई नहीं
$3\,\left[ {{{\sin }^4}\,\left( {\frac{{3\pi }}{2} - \alpha } \right) + {{\sin }^4}\,(3\pi + \alpha )} \right]$ $ - 2\,\left[ {{{\sin }^6}\,\left( {\frac{\pi }{2} + \alpha } \right) + {{\sin }^6}(5\pi - \alpha )} \right] = $
$A, B, C$ एक त्रिभुज के कोण हैं, तब ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C - 2\cos A\,\cos B\,\cos C = $
निम्नलिखित को सिद्ध कीजिए
$\cos ^{2} 2 x-\cos ^{2} 6 x=\sin 4 x \sin 8 x$
यदि $A + B + C = \pi ,$ तो ${\tan ^2}\frac{A}{2} + {\tan ^2}\frac{B}{2} + $${\tan ^2}\frac{C}{2}$ हमेशा है
यदि $\cos \left( {\frac{{\alpha - \beta }}{2}} \right) = 2\cos \left( {\frac{{\alpha + \beta }}{2}} \right)$, तो $\tan \frac{\alpha }{2}\tan \frac{\beta }{2}$ का मान होगा