3.Trigonometrical Ratios, Functions and Identities
easy

यदि $90^\circ  < A < 180^\circ $ तथा $\sin A = \frac{4}{5},$ तब $\tan \frac{A}{2}$ का मान होगा

A

$1/2$

B

$3/5$

C

$3/2$

D

$2$

Solution

$\sin \,A = \frac{4}{5}$

$\Rightarrow$ $\tan A =  – \frac{4}{3}$, $({90^o} < A < {180^o})$

$\tan A = \frac{{2\tan \frac{A}{2}}}{{1 – {{\tan }^2}\frac{A}{2}}}$, (माना $\tan \frac{A}{2} = P$)

$ – \frac{4}{3} = \frac{{2P}}{{1 – {P^2}}}$

$\Rightarrow$  $4{P^2} – 6P – 4 = 0$

$\Rightarrow$ $P = \frac{{ – 1}}{2}\,$(असम्भव),

अत:  $\tan \frac{A}{2} = 2$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.