જો $\sin \alpha = \frac{{336}}{{625}}$ અને $450^\circ < \alpha < 540^\circ ,$ તો $\sin \left( {\frac{\alpha }{4}} \right) = $

  • A

    $\frac{1}{{5\sqrt 2 }}$

  • B

    $\frac{7}{25}$

  • C

    $\frac{4}{5}$

  • D

    $\frac{3}{5}$

Similar Questions

ત્રિકોણ $ABC$ માટે ,$\sin A + \sin B + \sin C  = . . . .$

$\cos \frac{\pi }{7}\cos \frac{{2\pi }}{7}\cos \frac{{4\pi }}{7} = $

${(\cos \alpha + \cos \beta )^2} + {(\sin \alpha + \sin \beta )^2} = $

${\cos ^2}A{(3 - 4{\cos ^2}A)^2} + {\sin ^2}A{(3 - 4{\sin ^2}A)^2} = $

સાબિત કરો કે : $\sin ^{2} 6 x-\sin ^{2} 4 x=\sin 2 x \sin 10 x$