3.Trigonometrical Ratios, Functions and Identities
hard

यदि $\sin \alpha = \frac{{336}}{{625}}$ तथा $450^\circ < \alpha < 540^\circ ,$ हो तो $\sin \left( {\frac{\alpha }{4}} \right)   $ बराबर है 

A

$\frac{1}{{5\sqrt 2 }}$

B

$\frac{7}{25}$

C

$\frac{4}{5}$

D

$\frac{3}{5}$

Solution

(c) $\sin \alpha  = \frac{{336}}{{625}}$

$\Rightarrow$ $\cos \alpha  =  – \sqrt {1 – {{\sin }^2}\alpha }  =  – \sqrt {1 – {{\left( {\frac{{336}}{{625}}} \right)}^2}} $

                                               [ $\because \alpha $, $II$  चतुर्थांश में है]

अब $\cos \left( {\frac{\alpha }{2}} \right) =  – \sqrt {\frac{{1 + \cos \alpha }}{2}}  =  – \frac{7}{{25}}$     

                                                [ $\because \frac{\alpha }{2}$  $III$ चतुर्थांश में है]

$\therefore \,\,\,\sin \left( {\frac{\alpha }{4}} \right) =  + \sqrt {\frac{{1 – \cos (\alpha /2)}}{2}}  = \sqrt {\frac{{1 + \frac{7}{{25}}}}{2}}  = \frac{4}{5}$

                                                 [ $\because \frac{\alpha }{4}$  दूसरे चतुर्थांश में है]

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.