જો  $x\cos \theta = y\cos \,\left( {\theta + \frac{{2\pi }}{3}} \right) = z\cos \,\left( {\theta + \frac{{4\pi }}{3}} \right),$ તો $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ ની કિમંત મેળવો.

  • [IIT 1984]
  • A

    $1$

  • B

    $2$

  • C

    $0$

  • D

    $3\,\,\cos \theta $

Similar Questions

$\cos 2(\theta + \phi ) - 4\cos (\theta + \phi )\sin \theta \sin \phi + 2{\sin ^2}\phi = $

સાબિત કરો કે, $=\frac{\sin 5 x-2 \sin 3 x+\sin x}{\cos 5 x-\cos x}=\tan x$

$\sqrt {2 + \sqrt {2 + 2\cos 4\theta } } = $

જો $a{\sin ^2}x + b{\cos ^2}x = c,\,\,$$b\,{\sin ^2}y + a\,{\cos ^2}y = d$ અને $a\,\tan x = b\,\tan y,$ તો $\frac{{{a^2}}}{{{b^2}}}  = . . ..$

જો ${\tan ^2}\theta = 2{\tan ^2}\phi + 1,$ તો $\cos 2\theta + {\sin ^2}\phi   = . . .$