સાબિત કરો કે : $\sin 2 x+2 \sin 4 x+\sin 6 x=4 \cos ^{2} x \sin 4 x$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$L.H.S.$ $=\sin 2 x+2 \sin 4 x+\sin 6 x$

$=[\sin 2 x+\sin 6 x]+2 \sin 4 x$

$=\left[2 \sin \left(\frac{2 x+6 x}{2}\right) \cos \left(\frac{2 x-6 x}{2}\right)\right]+2 \sin 4 x$

$\left[\because \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right]$

$=2 \sin 4 x \cos (-2 x)+2 \sin 4 x$

$=2 \sin 4 x \cos 2 x+2 \sin 4 x$

$=2 \sin 4 x(\cos 2 x+1)$

$=2 \sin 4 x\left(2 \cos ^{2} x-1+1\right)$

$=2 \sin 4 x\left(2 \cos ^{2} x\right)$

$=4 \cos ^{2} x \sin 4 x$

$=R.H .S.$

Similar Questions

જો ${\tan ^2}\theta = 2{\tan ^2}\phi + 1,$ તો $\cos 2\theta + {\sin ^2}\phi   = . . .$

$cos^273^o  + cos^247^o  + (cos73^o  . cos47^o )$ = 

If $k = \sin \frac{\pi }{{18}}\,.\,\sin \frac{{5\pi }}{{18}}\,.\,\sin \frac{{7\pi }}{{18}},$ then the numerical value of $k$ is

  • [IIT 1993]

જો $A + B + C = \pi ,$ તો $\frac{{\cos A}}{{\sin B\sin C}} + \frac{{\cos B}}{{\sin C\sin A}} + \frac{{\cos C}}{{\sin A\sin B}} = $

જો $A, B, C $ એ ધન લઘુકોણ હોય તો $A + B + C = \pi $ અને $\cot A\,\cot \,B\,\cot \,C = K,$ તો