If $\sin \theta + \cos \theta = x,$ then ${\sin ^6}\theta + {\cos ^6}\theta = \frac{1}{4}[4 - 3{({x^2} - 1)^2}]$ for
All real $x$
${x^2} \le 2$
${x^2} \ge 2$
None of these
If $A + B + C = \pi ,$ then $\frac{{\cos A}}{{\sin B\sin C}} + \frac{{\cos B}}{{\sin C\sin A}} + \frac{{\cos C}}{{\sin A\sin B}} = $
$\frac{{\sin {{81}^o} + \cos {{81}^o}}}{{\sin {{81}^o} - \cos {{81}^o}}}$ is equal to
$\frac{{\tan A + \sec A - 1}}{{\tan A - \sec A + 1}} = $
$\sin 12^\circ \sin 48^\circ \sin 54^\circ = $
If ${\tan ^2}\theta = 2{\tan ^2}\phi + 1,$ then $\cos 2\theta + {\sin ^2}\phi $ equals