If $A, B, C$ are acute positive angles such that $A + B + C = \pi $ and $\cot A\,\cot \,B\,\cot \,C = K,$ then

  • A

    $K \le \frac{1}{{3\sqrt 3 }}$

  • B

    $K \ge \frac{1}{{3\sqrt 3 }}$

  • C

    $K < \frac{1}{9}$

  • D

    $K > \frac{1}{3}$

Similar Questions

If $A + B + C = {180^o},$ then the value of $(\cot B + \cot C)$ $(\cot C + \cot A)\,\,(\cot A + \cot B)$ will be

The value of $ \cos ^{3}\left(\frac{\pi}{8}\right) \cdot \cos \left(\frac{3 \pi}{8}\right)+\sin ^{3}\left(\frac{\pi}{8}\right) \cdot \sin \left(\frac{3 \pi}{8}\right)$ is 

  • [JEE MAIN 2020]

$\frac{{\sin \theta + \sin 2\theta }}{{1 + \cos \theta + \cos 2\theta }} = $

Prove that $\cos ^{2} 2 x-\cos ^{2} 6 x=\sin 4 x \sin 8 x$

Prove that $\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}=2 \sin x$