- Home
- Standard 11
- Mathematics
If $x = sec\, \phi - tan\, \phi$ & $y = cosec\, \phi + cot\, \phi$ then :
$xy + x - y + 1 = 0$
$y = \frac{{1\,\, + \,\,x}}{{1\,\, - \,\,x}}$
$x = \frac{{y\,\, - \,\,1}}{{y\,\, + \,\,1}}$
All of the above
Solution
$x = \frac{{1 – \sin \phi }}{{\cos \phi }}\,\, = \,\,\frac{{1 – \cos (\pi /2 – \phi )}}{{\sin (\pi /2 – \phi )}}$ $= tan(\pi /4-\phi /2)$
$y = \frac{{1 + \cos \phi }}{{\sin \phi }}\,\, = \,\,\frac{{2\,{{\cos }^2}\phi /2}}{{2\sin (\phi /2)\,\cos (\phi /2)}}$ $= cot\, \phi /2$
$x = \frac{{1 – \tan \phi /2}}{{1 + \tan \phi /2}}$ $=$$\frac{{\cot \phi /2\, – \,1}}{{\cot \phi /2\, + 1}}\,\, = \,\,\frac{{y – 1}}{{y + 1}}$
Applying $C/D$ $\frac{{x + 1}}{{x – 1}}\,\, = \,\,\frac{{y – 1 + y + 1}}{{y – 1 – y – 1}}\,\, = \,\,y$
Also ,$y =$$\frac{{x + 1}}{{1 – x}}\,\, \Rightarrow $ $y – xy – x-1 = 0$