If $x = sec\, \phi - tan\, \phi$ & $y = cosec\, \phi + cot\, \phi$ then :
$xy + x - y + 1 = 0$
$y = \frac{{1\,\, + \,\,x}}{{1\,\, - \,\,x}}$
$x = \frac{{y\,\, - \,\,1}}{{y\,\, + \,\,1}}$
All of the above
Suppose $\theta $ and $\phi (\ne 0)$ are such that $sec\,(\theta + \phi ),$ $sec\,\theta $ and $sec\,(\theta - \phi )$ are in $A.P.$ If $cos\,\theta = k\,cos\,( \frac {\phi }{2})$ for some $k,$ then $k$ is equal to
In a triangle $\tan A + \tan B + \tan C = 6$ and $\tan A\tan B = 2,$ then the values of $\tan A,\,\,\tan B$ and $\tan C$ are
$\cos \frac{{2\pi }}{{15}}\cos \frac{{4\pi }}{{15}}\cos \frac{{8\pi }}{{15}}\cos \frac{{16\pi }}{{15}} =$
$\tan \frac{A}{2}$ is equal to
If $2\sec 2\alpha = \tan \beta + \cot \beta ,$ then one of the values of $\alpha + \beta $ is