यदि $\sin A = n\sin B,$ तो $\frac{{n - 1}}{{n + 1}}\tan \,\frac{{A + B}}{2} = $
$\sin \frac{{A - B}}{2}$
$\tan \frac{{A - B}}{2}$
$\cot \frac{{A - B}}{2}$
इनमें से कोई नहीं
$\sin 12^\circ \sin 48^\circ \sin 54^\circ = $
${\rm{cosec }}A - 2\cot 2A\cos A = $
$2\,{\sin ^2}\beta + 4\,\,\cos \,(\alpha + \beta )\,\,\sin \,\alpha \,\sin \,\beta + \cos \,2\,(\alpha + \beta ) = $
$3\,\left[ {{{\sin }^4}\,\left( {\frac{{3\pi }}{2} - \alpha } \right) + {{\sin }^4}\,(3\pi + \alpha )} \right]$ $ - 2\,\left[ {{{\sin }^6}\,\left( {\frac{\pi }{2} + \alpha } \right) + {{\sin }^6}(5\pi - \alpha )} \right] = $
${\cos ^2}A{(3 - 4{\cos ^2}A)^2} + {\sin ^2}A{(3 - 4{\sin ^2}A)^2} = $